[identity profile] nagornov-artem.livejournal.com posting in [community profile] engineering_ru
Некоторое время назад я написал о том, как производятся пластинчатые теплообменники. Были вопросы по его устройству и принципам работы. Этому и будет посвящен данный материал. Напомню, что пластинчатый теплообменник производства нашей компании (где я работаю), да и любого другого производителя выглядит следующим образом:

1 ПТО

А вот устроен он следующим образом. У производителей оружия такое изображение называется "взрыв-схемой". Ну пусть и у нас будет что-то подобное :-)

конструкция ПТО (черно-белая)

Конструктивно разборный пластинчатый теплообменник, состоит из рамы и пакета пластин.
Рама состоит из неподвижной плиты (1) и прижимной плиты (2), задней стойки (7) которая соединена с неподвижной плитой верхней направляющей (3) и нижней направляющей (4). Рамы разборных теплообменников выпускаются разной длины для обеспечения установки в нее разного количества пластин.
Между неподвижной и прижимной плитами находится расчетное количество пластин (5) с резиновыми уплотнительными прокладками.
Пакет прижат к неподвижной плите прижимной плитой резьбовыми стяжками (6). Степень сжатия достаточна для уплотнения и герметизации внутренних полостей теплообменника

О плитах, направляющих, стяжках наверное особо нечего написать. Поэтому далее речь пойдет о пластинах и прокладках. Именно эти части теплообменника контактируют со средами, которые участвуют в процессе теплообмена.
Начнем с пластин. изготавливаются штамповкой, обычно из нержавеющей стали аустенитного класса AISI 316, после штамповки производится электрохимическое полирование пластины. Наиболее близким российским аналогом этой стали является сталь 08Х18Н10Т. Сталь AISI 316 (как и все нержавеющие стали) несклонна к общим видам коррозии, однако при работе с высоко агрессивными средами (высокие температуры, высокое содержание хлоридов и др.) могут протекать местные виды коррозии, например язвенная (питтинговая) коррозия.
Химический состав нержавеющей стали AISI 316:
Углерод 0,08%, Хром 16-18%, Никель 10 –14%, Молибден 2-3%
Это основная сталь для производства пластин теплообменников. Наличие молибдена (по сравнению с 08Х18Н10Т) снижает уровень язвенной коррозии.
Толщина пластины (0,4…1,0 мм) зависит от максимального рабочего давления. На давление до 10 атм. используются пластины толщиной 0,4 мм, на давление до 16 атм. - пластины толщиной 0,5 мм, на давление до 25 атм. - пластины толщиной 0,6 мм
Для агрессивных сред (по отношению к стали AISI 316) применяют более дорогие материалы, например, 254 SMO, ТИТАН, хастеллой и т.д.
Для менее агрессивных сред (по отношению к стали AISI 316) применяют сталь AISI 304.

пластина с прокладкой (стрелки)

Теплообменная пластина обладает высокоэффективной теплопередачей за счет термодинамически оптимальной конструкции
Принцип «Off-Set» обеспечивает возможность создания как симметричных так и асимметричных каналов (1)
Специальный рельеф распределительной площадки оптимально распределяет теплоносители (2)
Простое крепление уплотнений к пластине посредством клипсовой системы
Уплотнения со специальными зажимами для оптимального центрирования и фиксации пакета пластин (3)
Двойное уплотнение с кантом утечки полностью предотвращает возможность смешения сред в области проходных отверстий (4)
Специальный окантовочный рельеф пластин обеспечивает необходимую жесткость пакета пластин, а также стабильную фиксацию уплотнений при оказании на них давления в процессе эксплуатации теплообменников (5).

Рифление пластин может быть разным. Как правило различают "термически жесткое рифление" с углом 30 градусов (характеризуется более высоким коэфф-том теплопередачи, но и большими потерями давления) и "термически мягкое рифление" с углом 60 градусов (характеризуется более низким коэфф-том теплопередачи, но и меньшими потерями давления). Расчетная программа подбирает такую комбинацию пластин, чтобы обеспечить необходимую теплопередачу, но при этом уложиться в заданные потери давления.

Вот как выглядят эти два типа рифления. Слева "жесткая" пластина, справа "мягкая" пластина.

типы рифления пластин

Комбинируя пластины в пластинчатом теплообменнике можно организовать течение жидкостей в трех различных типах каналов, которые и образуют данные пластины:

«мягкий» канал
Пластины с углом рифления 60°. Малая турбулизация течения жидкости, малый коэффициент теплопередачи, малое гидравлическое сопротивление.

«средний» канал
Пластина с углами рифления 60° и 30°. Средняя турбулизация течения жикости, средний коэффициент теплопередачи, среднее гидравлическое сопротивление.

«жесткий» канал
Пластины с углом рифления 30°. Высокая турбулизация течения жидкости, высокий коэффициент теплопередачи, высокое гидравлическое сопротивление.

О течениях жидкости:
Вообще различают три режима течения жидкостей:

3 течения жидкости

Х, У – координаты плоскости,
W – скорость потока жидкости,
1 – ламинарный режим течения, спокойный режим течения поток жидкости однородный, слои жидкости двигаются параллельно друг другу (без перемешивания), тепло, в направлении перпендикулярном направлению течения жидкости, передается практически только за счет теплопроводного механизма, поэтому коэффициент теплопередачи - минимален.
2 – переходный режим течения, в потоке жидкости начинается зарождение турбулентных образований (вихрей), эпизодическое перемещение макрочастиц жидкости из одной температурной области в другую (элементы конвекции). Поэтому коэффициент теплопередачи - растет (выше, чем при ламинарном течении).
3 – турбулентный режим течения, поток жидкости турбулизован полностью, коэффициент теплопередачи - максимален.

Вот как образуется турбулентный режим течения жидкости в пластинчатом теплообменнике

турбулизация потока

Пластинчатый теплообменник рассчитывается и должен работать на турбулентном режиме. В этом и заключается его отличие и более высокая эффективность чем у кожухотрубного теплообменника (принцип "труба в трубе"), где течение жидкости ламинарное. Для одной той же задачи площадь теплообмена пластинчатого теплообменника будет меньше в 3-4 раза, чем у кожухотрубного теплообменника.

Далее речь пойдет об уплотнительных прокладках теплообменника.

прокладки ПТО

Прокладки обеспечивают герметичность теплообменника относительно окружающей среды и не допускают смешивание сред участвующих в процессе теплообмена. Прокладки изготавливаются из специальных полимеров, которые обеспечивают требуемые температурные параметры или химическую стойкость.
Как правило, применяется материал EPDM, который представляет собой этиленпропиленовый полимер. Он применяется в основном для горячей воды и пара. Однако на него могут губительно действовать различные жиры и масла.
Рабочий диапазон температур для резины EPDM составляет от –35 град.С до +160 град. С.
Могут в теплообменнике также применяться прокладки из других материалов:
NITRIL (NBR) - применяются для маслянистых жидкостей температурой до 135 град. С,
VITON – на агрессивные среды до 180 град. С.
вообще наглядно срок жизни прокладок иллюстрируют вот такие графики:

срок службы ЕПДМ

срок службы НБР

Крепятся прокладки на пластине двумя способами:
1) Клеевой. Пластина фиксируется в специальной канавке с помощью клея, чтобы при сборке не соскочила ненароком с пластины. Данный способ и тип прокладок уже практически не применяется производителями теплообменников. Лишние затраты труда, времени при производстве, а также трудности в обслуживании - наличие специального клея, укладка прокладок, время на высыхание и пр.
2) Клипсовый. Конструкция прокладки имеет клипсы по периметру, с помощью которых она закрепляется на пластине. Более понятно картина выглядит вот так:

крепление прокладки клипса 1

крепление прокладки клипса 2

Мы используем в своих теплообменниках прокладки только с клипсовым креплением к пластине.

Теперь о том, как протекают процессы в пластинчатом теплообменнике:

Пластины разборного пластинчатого теплообменника устанавливаются одна за другой с поворотом на 180 град. Эта компоновка создает теплообменный пакет с четырьмя коллекторами для подвода и отвода жидкостей. Первая и последняя пластины не участвуют в процессе теплообмена, задняя пластина выполняется обычно без портов.

сзема ПТО с потоками

Уплотнение портов неподвижной плиты теплообменника осуществляется либо специальными кольцами, устанавливающимися между первой пластиной и неподвижной плитой, либо специальной прокладкой первой пластины.

О видах компоновки пластинчатых теплообменников.
Различают одноходовую компоновку теплообменника и многоходовую компоновку теплообменника.
При одноходовой компоновке поток жидкости, войдя в порт теплообменника, делится сразу на заданное число каналов и расходится на параллельные потоки. Далее проходит один раз по каналам стекается снова в порт и выходит из теплообменника.
При такой схеме компоновки все присоединительные патрубки расположены на неподвижной плите. Это значительно облегчает эксплуатацию и обслуживание теплообменника, т.к. ничто не мешает отодвинуть заднюю плиту теплообменника и вынимать пластины.
При многоходовой компоновке, жидкости совершают несколько ходов по одинаковому числу каналов. Это достигается установкой промежуточных пластин с двумя глухими портами (верхними или нижними) и позволяет в одном теплообменнике достигать очень большого тепло-съема.
Однако при этом появляются присоединения на прижимной плите теплообменника, что сильно ухудшает его обслуживание. Кроме того, такой теплообменник становится дорог и его гидравлическое сопротивление заметно возрастает.

Вот как это выглядит графически:

одноходовой и двухходовой ПТо

вот одноходовая компоновка в цвете:

одноходовой ПТО

вот двухходовая компоновка в цвете:

мноходовая компоновка (цвет)

Мы выпускаем теплообменники в основном в одноходовой компоновке. Это облегчает сильно процесс обслуживания теплообменников в дальнейшем. Да и нет в необходимости в выпуске многоходовых теплообменниках по той причине, что типоразмерный ряд компании очень широк и имеет на каждый ДУ и низкие пластины и высокие.

типоразмерный ряд

По устройству и принципу работы наверное все.

Всегда Ваш,
товарищ Артем

Date: 2014-09-30 02:20 pm (UTC)
From: [identity profile] der-jolly.livejournal.com
Как говорил, я не теплотехник, но, думаю, пластинчатый, при тех же характеристиках выигрывает у трубчатого по габаритам. Пространство в машинном отделении ограничено. Проектов судов разных стран через меня много прошло, везде то же самое. Трубчатые, как правило, стоят на конденсатной части паровых котлов или турбин, там нет такого интенсивного теплообмена.
Но. Трудоемкость обслуживания, именно на судах, данного типа не отменяет.
Я был свидетелем как береговая бригада со сервис-центра такого холодильника раз, эдак, 30 делала сборку-разборку - течет, возили на берег, что там делали - не знаю. Привезли, опять течет. Сменился, уже не в курсе, чем закончилось.

Profile

engineering_ru: (Default)
Инженерия

February 2022

S M T W T F S
  12345
6789101112
13141516171819
20212223242526
2728     

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 2nd, 2025 05:18 am
Powered by Dreamwidth Studios