http://nemez-06.livejournal.com/ (
nemez-06.livejournal.com) wrote in
engineering_ru2016-05-19 02:05 pm
Entry tags:
Joby Aviation Lotus VTOL - оригинальный БпЛА с вертикальным взлетом
Компания Joby Aviation, Санта-Круз, Калифорния по контракту с NASA разрабатывает оригинальный концепт БпЛА вертикального взлета и посадки с высокой крейсерской эффективностью. Ключевая идея состоит в использовании винтов как законцовок крыла. Изначально, идея Dos Samara из NASA (известная под названием “multifunctional reconfigurable propeller”) состояла в использовании широкохордовых однолопастных винтов, которые складываясь прижимались к крылу, продолжая его размах как законцовки. Однако использование однолопастных винтов тянуло за собой большие циклические нагрузки на шарнирный механизм из за инерции противовеса, да и сам винт имел небольшую эффективность. В компании Joby Aviation развили идею в направлении двухлопастного винта - чем почти убрали проблему циклических нагрузок. В отличии от других конструкций, с остановкой ротора. в этом концепте обе лопасти встречают поток передней кромкой в обоих режимах полета - вертикальном и горизонтальном

В вертикальном полете несущая схема трех-винтовая, два винта большого диаметра на концах крыла на режиме вертикального взлета вращаются со скоростью 35 об/сек и один малого диаметра на вершине крыла, который служит для балансировки. Задача обеспечения управляемости в вертикальном полете и переходном режиме без использования тяжелых и сложных механизмов вроде автомата перекоса - тот еще орешек. Управление по тангажу обеспечивается разными оборотами (следовательно тягой) моторов на крыле и киле, по крену разными оборотами моторов на крыле, по рысканью - дифференциальным изменением угла наклона законцовок-роторов.

Переход в горизонтальный полет начинается с поворота вперед хвостового винта, который создает тягу. На некоторое время вперед поворачиваются и винты на законцовках крыла, чтобы придать апарату поступательную скорость до возникновения подъемной силы.
В горизонтальном полете лопасти несущих винтов фиксируются, поворачиваются и реализовывают законцовку типа Split tip - расщепленное крыло, которое дает некоторое снижение индуктивного сопротивления при горизонтальном полете (по результатам ряда исследований крыло с расщепленной законцовкой при равному удлинении может иметь большую эффективность нежели эллиптическое, повсеместно принятое за эталон "наиболее эффективной формы крыла").
Особую хитрость представляет узел привода винта-законцовки. В законцовке крыла установлен бесколлекторный двигатель собственной разработки, с низким шумом, контроллер которого контролирует движение каждой лопасти как вместе (общие обороты ротора) так и друг относительно друга (поворот лопасти для фиксации). Разработать такой механизм, чтобы он был простым, надежным и легким было отдельным вызовом для команды исследователей во главе с JoeBen Bevirt, основателем фирмы Joby Aviation.

Передняя и задняя лопасти (передней и задней они становятся в горизонтальном полете, будучи зафиксированными) имеют одни и те же профиля, распределение хорд и крутку по размаху, однако установлены с разными углами поперечного V. Определение аэродинамического облика лопасти-законцовки, дабы обеспечить эффективность и как лопасти винта, и как законцовки крыла потребовало очень интересного компромиссного решения. Для расчета аэродинамики использовалась программа CD-Adapco STAR-CCM+®, в которой было прогнано десятки различных комбинаций этих переменных в крейсерской конфигурации, для определения крейсерской эффективности. Анализ режима вертикального взлета так же проводился в CFD, но только для подтверждения результата полученного иными методами низкого порядка точности.
Перед проведением летных испытаний аппарат был установлен на грузовике Ford F-150 оборудованном рамой с точными тензометрическими датчиками, которые позволяют замерять силы и моменты на аппарате, во время движения грузовика вдоль взлетной полосы - дешевая альтернатива аэродинамической трубе.

Аппарат демонстрировался на конференции Association for Unmanned Vehicle Systems International (AUVSI), Атланта, штат Джорджия. В будущем планируется разработать полноразмерный 125 килограммовый аппарат с гибридной электрической силовой установкой и длительностью полета 24 часа.

Характеристики - демонстратор
Взлетный вес - 25 кг
Полезная нагрузка - 3,2 кг
Размах крыла - 3,35 м
Продолжительность полета - 1 ч
Крейсерская скорость - 115 км/ч
Рабочая высота полета - 3000 м
Общая мощность силовой установки - 4 л.с.
Общий вес батарей - 4,5 кг
Характеристики - будущий серийный БпЛА
Взлетный вес - 125 кг
Полезная нагрузка - 27,2 кг
Размах крыла - 6,7 м
Продолжительность полета - 24 ч
Крейсерская скорость - 185 км/ч
Рабочая высота полета - 6400 м
Общая мощность силовой установки - 20 л.с.
Общий вес батарей - 11,3 кг
Запас топлива - 34 литра дизтоплива
Источники:
http://www.jobyaviation.com/lotus/
http://sustainableskies.org/9921/
http://aviationweek.com/technology/startup-gets-head-start-electric-vtol (но так как на нем доступ только через регистрацию, то текст доступен на форуме http://www.w54.biz/showthread.php?16-UAV-s-UCAV-s-and-other-such-matters/page270 )
http://electronicdesign.com/embedded/gallery-unusual-uavs-auvsi-2015#slide-1-field_images-839771
http://www.cd-adapco.com/article_ext/multifunctional-rotor-concept-quiet-and-efficient-vtol-aircraft
http://articles.sae.org/14580/
Публикации в научных журналах (для скачивания можно использовать сервис sci-hub.cc и вставить в него ссылку с DOI ниже)
A Multifunctional Rotor Concept for Quiet and Efficient VTOL Aircraft - Stoll 2013
http://dx.doi.org/10.2514/6.2013-4374
Design and Testing of the Joby Lotus Multifunctional Rotor VTOL UAV - Sinha 2015
http://dx.doi.org/10.2514/6.2015-3336
Видео:
Оригинал взят у 
В вертикальном полете несущая схема трех-винтовая, два винта большого диаметра на концах крыла на режиме вертикального взлета вращаются со скоростью 35 об/сек и один малого диаметра на вершине крыла, который служит для балансировки. Задача обеспечения управляемости в вертикальном полете и переходном режиме без использования тяжелых и сложных механизмов вроде автомата перекоса - тот еще орешек. Управление по тангажу обеспечивается разными оборотами (следовательно тягой) моторов на крыле и киле, по крену разными оборотами моторов на крыле, по рысканью - дифференциальным изменением угла наклона законцовок-роторов.

Переход в горизонтальный полет начинается с поворота вперед хвостового винта, который создает тягу. На некоторое время вперед поворачиваются и винты на законцовках крыла, чтобы придать апарату поступательную скорость до возникновения подъемной силы.
В горизонтальном полете лопасти несущих винтов фиксируются, поворачиваются и реализовывают законцовку типа Split tip - расщепленное крыло, которое дает некоторое снижение индуктивного сопротивления при горизонтальном полете (по результатам ряда исследований крыло с расщепленной законцовкой при равному удлинении может иметь большую эффективность нежели эллиптическое, повсеместно принятое за эталон "наиболее эффективной формы крыла").
Особую хитрость представляет узел привода винта-законцовки. В законцовке крыла установлен бесколлекторный двигатель собственной разработки, с низким шумом, контроллер которого контролирует движение каждой лопасти как вместе (общие обороты ротора) так и друг относительно друга (поворот лопасти для фиксации). Разработать такой механизм, чтобы он был простым, надежным и легким было отдельным вызовом для команды исследователей во главе с JoeBen Bevirt, основателем фирмы Joby Aviation.

Передняя и задняя лопасти (передней и задней они становятся в горизонтальном полете, будучи зафиксированными) имеют одни и те же профиля, распределение хорд и крутку по размаху, однако установлены с разными углами поперечного V. Определение аэродинамического облика лопасти-законцовки, дабы обеспечить эффективность и как лопасти винта, и как законцовки крыла потребовало очень интересного компромиссного решения. Для расчета аэродинамики использовалась программа CD-Adapco STAR-CCM+®, в которой было прогнано десятки различных комбинаций этих переменных в крейсерской конфигурации, для определения крейсерской эффективности. Анализ режима вертикального взлета так же проводился в CFD, но только для подтверждения результата полученного иными методами низкого порядка точности.
![]() |
![]() |
Перед проведением летных испытаний аппарат был установлен на грузовике Ford F-150 оборудованном рамой с точными тензометрическими датчиками, которые позволяют замерять силы и моменты на аппарате, во время движения грузовика вдоль взлетной полосы - дешевая альтернатива аэродинамической трубе.
![]() |
![]() |
![]() |
![]() |

Аппарат демонстрировался на конференции Association for Unmanned Vehicle Systems International (AUVSI), Атланта, штат Джорджия. В будущем планируется разработать полноразмерный 125 килограммовый аппарат с гибридной электрической силовой установкой и длительностью полета 24 часа.

Характеристики - демонстратор
Взлетный вес - 25 кг
Полезная нагрузка - 3,2 кг
Размах крыла - 3,35 м
Продолжительность полета - 1 ч
Крейсерская скорость - 115 км/ч
Рабочая высота полета - 3000 м
Общая мощность силовой установки - 4 л.с.
Общий вес батарей - 4,5 кг
Характеристики - будущий серийный БпЛА
Взлетный вес - 125 кг
Полезная нагрузка - 27,2 кг
Размах крыла - 6,7 м
Продолжительность полета - 24 ч
Крейсерская скорость - 185 км/ч
Рабочая высота полета - 6400 м
Общая мощность силовой установки - 20 л.с.
Общий вес батарей - 11,3 кг
Запас топлива - 34 литра дизтоплива
Источники:
http://www.jobyaviation.com/lotus/
http://sustainableskies.org/9921/
http://aviationweek.com/technology/startup-gets-head-start-electric-vtol (но так как на нем доступ только через регистрацию, то текст доступен на форуме http://www.w54.biz/showthread.php?16-UAV-s-UCAV-s-and-other-such-matters/page270 )
http://electronicdesign.com/embedded/gallery-unusual-uavs-auvsi-2015#slide-1-field_images-839771
http://www.cd-adapco.com/article_ext/multifunctional-rotor-concept-quiet-and-efficient-vtol-aircraft
http://articles.sae.org/14580/
Публикации в научных журналах (для скачивания можно использовать сервис sci-hub.cc и вставить в него ссылку с DOI ниже)
A Multifunctional Rotor Concept for Quiet and Efficient VTOL Aircraft - Stoll 2013
http://dx.doi.org/10.2514/6.2013-4374
Design and Testing of the Joby Lotus Multifunctional Rotor VTOL UAV - Sinha 2015
http://dx.doi.org/10.2514/6.2015-3336
Видео:






no subject
no subject
no subject
no subject
Более надёжный самолёт вертикального взлёта
https://www.youtube.com/watch?v=RwtySwWHu8Q
Ему бы ещё водородные топливные элементы, вырабатывающие ток для электродвигателей винтов, и большой водородный бак, чтоб сел на заправочной станции, дозаправился - и летишь дальше - и будет самое оно.
no subject
no subject
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
no subject
no subject
Это единственный недостаток который вы смогли найти?
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
no subject
no subject
(no subject)
(no subject)
(no subject)
Re: Более надёжный самолёт вертикального взлёта
no subject
(no subject)
(no subject)
no subject
Для этой же цели и лопости винтов складываются.
no subject
Сколько двигателей на V-22?
Сколько винтов на вертолёте Ми-8?
Что такое "отказ винта"?
no subject
(no subject)
(no subject)
(no subject)
no subject
Один большой винт эффективней как по весу так и по аэродинамике.
Завязывайте с тяжелыми наркотиками.
no subject
То есть пусть на головы падает что-ли? Высокая надёжность всем нужна.
(no subject)
no subject
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
no subject
Надо бы еще штук 20 поставить - и подъемная сила возрастет и внешний вид усугубится.(так не достаточно круто)
no subject
Взлетает - значит достаточно.
no subject
no subject
Почему вместо электрических двигателей - на квадрокоптер не поставить 4 двигателя от мотоцикла Ява.
На таком можно и человека увезти.
no subject
А если один из них заглохнет - что делать?
А так вообще ставили и восемь двигателей:
Но когда один из них отказал - произошла катастрофа.
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
no subject
Хотя наверно дело даже не в этом. Дешевле один мотор и автомат перекоса, чем наоборот.
(no subject)
(no subject)